作为一项新兴技术,据信,连接的自动驾驶汽车能够以更高的效率通过交叉点,并且与基于预先设计的基于模型或基于优化的计划通过计划相比,已经进行了数十年的相关研究,这是相比的。在过去两年中,自主交叉管理(AIM)领域(AIM)领域的分布强化学习才开始出现,并面临许多挑战。我们的研究设计了一个多级学习框架,具有各种观察范围,动作步骤和奖励期,以充分利用车辆周围的信息,并帮助找出所有车辆的最佳交互策略。我们的实验已证明,与没有它的RL相比,与RL相比,该框架可以显着提高安全性,并提高效率与基线相比。
translated by 谷歌翻译
原始目的地估计在智能运输系统(其)时代的交通管理和流量模拟中起着重要作用。然而,以前的基于模型的模型面临不确定的挑战,因此存在对额外假设和额外数据的绝望需求。深度学习提供了基于基于数据的理想方法,用于通过概率分布转换连接输入和结果。虽然将深入学习的相关研究由于跨代表空间的数据转换挑战而受到限制,但特别是在该问题中的动态空间空间到异构图。为了解决它,我们提出了基于具有双层注意机制的新型图形匹配器的循环图本心匹配编码器(C-Game)。它实现了基础特征空间中的有效信息交换,并建立了空间的耦合关系。拟议的模型实现了最先进的实验结果,并在潜在就业中的空间中提供了一种新颖的推理任务框架。
translated by 谷歌翻译
在复杂的协调问题中,深层合作多智能经纪增强学习(Marl)的高效探索仍然依然存在挑战。在本文中,我们介绍了一种具有奇妙驱动的探索的新型情节多功能钢筋学习,称为EMC。我们利用对流行分解的MARL算法的洞察力“诱导的”个体Q值,即用于本地执行的单个实用程序功能,是本地动作观察历史的嵌入,并且可以捕获因奖励而捕获代理之间的相互作用在集中培训期间的反向化。因此,我们使用单独的Q值的预测误差作为协调勘探的内在奖励,利用集肠内存来利用探索的信息经验来提高政策培训。随着代理商的个人Q值函数的动态捕获了国家的新颖性和其他代理人的影响,我们的内在奖励可以促使对新或有前途的国家的协调探索。我们通过教学实例说明了我们的方法的优势,并展示了在星际争霸II微互动基准中挑战任务的最先进的MARL基础上的其显着优势。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.
translated by 谷歌翻译
Capturing feature information effectively is of great importance in vision tasks. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains on diverse deep learning vision tasks. However, the existing methods do not organically combined advantages of these valid ideas. In this paper, we propose a novel CNN architecture called GoogLe2Net, it consists of residual feature-reutilization inceptions (ResFRI) or split residual feature-reutilization inceptions (Split-ResFRI) which create transverse passages between adjacent groups of convolutional layers to enable features flow to latter processing branches and possess residual connections to better process information. Our GoogLe2Net is able to reutilize information captured by foregoing groups of convolutional layers and express multi-scale features at a fine-grained level, which improves performances in image classification. And the inception we proposed could be embedded into inception-like networks directly without any migration costs. Moreover, in experiments based on popular vision datasets, such as CIFAR10 (97.94%), CIFAR100 (85.91%) and Tiny Imagenet (70.54%), we obtain better results on image classification task compared with other modern models.
translated by 谷歌翻译
Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译